冰箱T1故障(冰箱T1故障代码维修)

本文目录一览 1.冰箱如何使用才能省电?从这三点入手准没错,电费嗖嗖的降 2.别再生搬硬套冰箱的省电方法,用这…

本文目录一览

1.冰箱如何使用才能省电?从这三点入手准没错,电费嗖嗖的降

冰箱的理论耗电量非常低(一般不超过每天1度电,具体可以看冰箱上“中国能效标识”上的数据),但实际使用时,耗电量却往往是标定值的数倍。为什么会发生这种问题呢?怎样做才能降低冰箱的耗电量呢?

我这里有一个冰箱的工作状态,诸位不妨看一下▼

电冰箱的耗电量,主要集中在压缩机启动时。因此想要降低冰箱的耗电量,无非就是延长T1、降低T2。那么如何延长时间T1,降低时间T2呢?无非是以下三种方法。

第一、提高冰箱设定温度

冰箱的保温效果,与冰箱内外温差有很大关系——温差越大,冰箱保温效果也就越好。不信?可以找个保温杯试一试,放入100℃的水和放入50℃的水,所有客观因素相同(保温杯相同、保温杯环境也相同)的前提下,下降20℃,一定是装满50℃水的保温杯用时更长。

因此,将冰箱温度设定高一点,有注意明显延长时间段T1。但是有两点需要注意:

1.温度调高以后,冰箱内的温度可能达不到你要求的效果,所谓鱼与熊掌不可兼得,看你要够凉还是要省电了。

2.冬季环境温度如果比设定温度还低(设定温度一般是0~10℃),就会导致压缩机一直不启动,最终使得冷冻室内不结冰(冰箱只能检测冷藏室内温度,只要冷藏室达到设定温度了,压缩机就不启动)。

第二、减少负载

冰箱里面的任何东西,都会散热——比如食物、餐具、冰霜等——这些东西,统称为“冰箱负载”。

想要延长时间段T1,就必须减少冰箱负载。比如一些没有必要放入冰箱的罐头、矿泉水,就别放进去了;放了很久的食物,该扔就扔吧,这是冰箱,不是储藏室;定期除霜,粘在冰箱壁上面的冰霜只会增加耗电量。

第三、保温散热

冰箱的保温性能与时间段T1有直接关系,提高冰箱的保温性能,是减少T1的最直接的方法。影响冰箱的保温性的因素有两种,一种是客观因素,另一种是人为因素。

客观因素,是指冰箱自身的保温性能受到了影响。比如密封条损坏等——有些时候维修冰箱需要把后盖拆掉,但是很多冰箱的后盖只能切开,之后装又装不上去,只能用胶布粘上(去家电维修店里看看,有很多这种冰箱),这就会大大影响冰箱的保温性。

人为因素就很多了,比如频繁或长时间开关冰箱门、向冰箱内放入热饭菜等。这些做法都是人为的将热气大量放入冰箱,导致冰箱内温度升高。

冰箱散热,是唯一一个与时间段T2有关的因素。

压缩机制冷时需要吸收冰箱内的热量,并通过冰箱两侧散热。如果散热不利,就会影响制冷速度——制冷速度慢了,想要维持原有的制冷效果(下降N℃),就必须延长制冷时间。

常见的,可能影响冰箱散热的因素有两种:

1.冰箱散热区域被阻挡——如今的冰箱多数通过两侧散热,个别冰箱是通过后背散热。开启冰箱时可以摸一下,哪里发热,哪里就是散热区。散热的地方一定不要被阻挡,至少要留出20CM的空隙。

2.冰箱放置区域的空气温度过高,也会影响冰箱的散热。比如放在西照的窗户旁、放在阳面阳台、放在炉灶旁等。


2.别再生搬硬套冰箱的省电方法,用这三种原理操作,每月省一半电费

冰箱的理论耗电量非常低(一般不超过每天1度电,具体可以看冰箱上“中国能效标识”上的数据),但实际使用时,耗电量却往往是标定值的数倍。为什么会发生这种问题呢?怎样做才能降低冰箱的耗电量呢?

我这里有一个冰箱的工作状态,诸位不妨看一下▼

电冰箱的耗电量,主要集中在压缩机启动时。因此想要降低冰箱的耗电量,无非就是延长T1、降低T2。那么如何延长时间T1,降低时间T2呢?无非是以下三种方法。

第一、提高冰箱设定温度

冰箱的保温效果,与冰箱内外温差有很大关系——温差越大,冰箱保温效果也就越好。不信?可以找个保温杯试一试,放入100℃的水和放入50℃的水,所有客观因素相同(保温杯相同、保温杯环境也相同)的前提下,下降20℃,一定是装满50℃水的保温杯用时更长。

因此,将冰箱温度设定高一点,有注意明显延长时间段T1。但是有两点需要注意:

1.温度调高以后,冰箱内的温度可能达不到你要求的效果,所谓鱼与熊掌不可兼得,看你要够凉还是要省电了。

2.冬季环境温度如果比设定温度还低(设定温度一般是0~10℃),就会导致压缩机一直不启动,最终使得冷冻室内不结冰(冰箱只能检测冷藏室内温度,只要冷藏室达到设定温度了,压缩机就不启动)。

第二、减少负载

冰箱里面的任何东西,都会散热——比如食物、餐具、冰霜等——这些东西,统称为“冰箱负载”。

想要延长时间段T1,就必须减少冰箱负载。比如一些没有必要放入冰箱的罐头、矿泉水,就别放进去了;放了很久的食物,该扔就扔吧,这是冰箱,不是储藏室;定期除霜,粘在冰箱壁上面的冰霜只会增加耗电量。

第三、保温散热

冰箱的保温性能与时间段T1有直接关系,提高冰箱的保温性能,是减少T1的最直接的方法。影响冰箱的保温性的因素有两种,一种是客观因素,另一种是人为因素。

客观因素,是指冰箱自身的保温性能受到了影响。比如密封条损坏等——有些时候维修冰箱需要把后盖拆掉,但是很多冰箱的后盖只能切开,之后装又装不上去,只能用胶布粘上(去家电维修店里看看,有很多这种冰箱),这就会大大影响冰箱的保温性。

人为因素就很多了,比如频繁或长时间开关冰箱门、向冰箱内放入热饭菜等。这些做法都是人为的将热气大量放入冰箱,导致冰箱内温度升高。

冰箱散热,是唯一一个与时间段T2有关的因素。

压缩机制冷时需要吸收冰箱内的热量,并通过冰箱两侧散热。如果散热不利,就会影响制冷速度——制冷速度慢了,想要维持原有的制冷效果(下降N℃),就必须延长制冷时间。

常见的,可能影响冰箱散热的因素有两种:

1.冰箱散热区域被阻挡——如今的冰箱多数通过两侧散热,个别冰箱是通过后背散热。开启冰箱时可以摸一下,哪里发热,哪里就是散热区。散热的地方一定不要被阻挡,至少要留出20CM的空隙。

2.冰箱放置区域的空气温度过高,也会影响冰箱的散热。比如放在西照的窗户旁、放在阳面阳台、放在炉灶旁等。


3.冰箱制冷系统维修技术手册

冰箱制冷系统维修手册

一、冰箱分类

目前我公司生产的直冷冰箱系统主要有机械控温与电脑控温两种控制方式,其中机械冰箱采用通常置于灯罩内的温控器控制冷藏室与冷冻室温度,电脑冰箱则通过分别置于各个独立温区的温度传感器控制各个温区的温度。

二、系统组成

电冰箱制冷系统为蒸气压缩式制冷系统,由下列部件构成封闭系统,系统中充灌R-600A制冷剂,由压缩机驱动在系统管路中循环,通过蒸发器吸热和冷凝器放热,以达到制冷的功能。

1.压缩机:

常规冰箱所用的压缩机为往复活塞式全封闭压缩机,

2.冷凝器:

冰箱冷凝器借助空气自然对流冷却,把制冷剂蒸气冷凝为液体,冷凝器分别置于电冰箱箱体两侧的箱壁内侧。

3.蒸发器:

蒸发器是制冷剂蒸发产生制冷效应的部件,有冷藏室蒸发器和冷冻室蒸发器。冷藏室蒸发器贴附于冷藏室后壁的发泡层一侧,冷冻室蒸发器直接固定于冷冻室箱胆内。

4. 毛细管:

毛细管是一根细长的铜管,在制冷系统中起节流作用。

5.干燥过滤器:

它置于冷凝器与毛细管之间,起吸附水分与过滤机械杂质的作用,以防毛细管脏堵或冰堵。

6.防凝露管:

在冰箱冷冻室的箱体门框四周内侧贴敷的管路,管中流过的高温高压的制冷剂可加热门框,可防止门框在空气湿度大时凝露。

7.连接管道:

电冰箱制冷系统各个部件之间借助管道连接,其中包括压缩机吸气管,排气管和连接配管等。

8.制冷剂:

又称制冷工质,冰箱用制冷剂主要有R-600A和R-134A,在制冷循环过程中冷凝和蒸发来放热和吸热,以产生制冷效果。

9.润滑油:

也称冷冻油,R-600A使用矿物油,R-134A使用脂类油,主要在压缩机的运动部位起润滑和冷却作用。

三、制冷系统

1.机械冰箱

双门机械冰箱绝大多数为单系统冰箱,即冷藏室蒸发器与冷冻室蒸发器串联接入制冷管路中,两个间室同时制冷或停止工作。

其系统原理图如下:

(代表机型:BCD-192CM/BCD-247CM等)先进冷冻

(代表机型:BCD-208H/BCD-188DR/BCD-199DM等,冰箱有软冷冻室)先进冷冻

三门机械冰箱为机械双变温系统,通过开关控制电磁阀的通断来切换中门不同的蒸发器,以改变中门的温度。

其系统原理图如下:

2.电脑冰箱

双温区电脑冰箱,采用电磁阀连接两根毛细管。两个温区可以单独控制温度,且其中一个温区可以单独关闭。

其系统原理图如下:

(代表机型:BCD-196H/BCD-192EM/BCD-202EM/BCD-195E)

三温区冰箱电脑冰箱,采用电磁阀连接三根毛细管。三个温区可以单独控制温度,其中两个温区可单独关闭。

其系统原理图如下:

(代表机型:BCD-188ER/BCD-198ER)

四、电气系统

因各个型号冰箱接线方式不尽相同,电冰箱的电气及控制系统请详见各个型号冰箱的说明书或参数标牌。

五、冰箱系统检查

1.制冷系统检查步骤:

(1)通电30分钟判断是否制冷。

(2)将电冰箱温控系统置于正常档位,通电120分钟检查制冷温度。冷藏室平均温度在O—10℃之间;冷冻室最高温度在-18℃以下。开停机情况:在冰箱持续通电2小时后,夏天开停比为3:1—1:1,冬天为1:3一1:5。当环境室温为18℃时,冰箱运行约15分钟,停机约45分钟左右。当室温为35℃时,冰箱运行约为45分钟,停机15分钟左右才能满足冰箱制冷需要。

(3)氮气保压检漏(不得以其它气体替代)。漏是指制冷系统制冷剂微漏或全部泄漏。原因有:焊缝质量不好,管道与接头受腐蚀或碰撞后有裂纹,蒸发器腐蚀穿孔等。现象为:制冷效果下降甚至不制冷,压缩机排气管与冷凝器热度下降甚至不热。蒸发器结霜不正常甚至不结霜,流水声减少甚至消失。如果是蒸发器本身穿孔泄漏,蒸发器有“吱吱吱”的气流声,压缩机运转不停,折断压缩机工艺管,只有少量甚至没有气流喷出。

(4)检查堵塞。堵是指制冷系统内污物堵塞毛细管、干燥过滤器或管道等。导致原因有毛细管由于油污和其它污物集结在入口段而堵塞,干燥过滤器由于铜丝网脏堵或生锈、分子筛粉碎致使干燥剂层过于密实而堵塞,管道(尤其是低压管道)会由于油物、污物的积结而堵塞。堵塞后现象与上述“漏”的现象相同,但折断压缩机工艺管有气流(制冷剂)喷出,制冷系统低压压力呈真空。干燥过滤器堵塞时,外壳发凉甚至凝露。冰堵是指毛细管被冰堵塞。

原因:由于检修过程中操作不慎,使制冷系统内的残留水份过量,在毛细管出口端结冰,使制冷系统不能正常工作。现象为:制冷与不制冷间歇进行,不制冷低压压力呈真空。检查手段:压力表或经验检查。

(5)检查压缩机故障:A.压缩机能启动、运转但不制冷。气焊焊下连接压缩机的排气管与吸气管单独试验时,排气管不排气,吸气管不吸气,这种情况多属于高压缓冲管断裂,或固定螺丝松动。B.压缩机能启动、运转,但蒸发器不结霜,仅凝露,或半边结霜半边不结霜,制冷效果显著下降,重新充灌制冷剂后还是无效果。这种情况多属于阀片或机内垫片击穿、阀片与阀板积碳密封性下降、活塞与汽缸间隙变大引起。C.压缩机空载运行时产生过热现象,多属润滑系统故障。D.压缩机在启动、运行中,机壳内发出异常的葫芦岛属敲击声,多属于机壳内避震弹簧脱钩或断裂。E.压缩机不能正常启动、运行,过载保护器周期性跳开,电机绕组阻值正常,对地的绝缘尚佳,这种情况多属于“卡缸”、“抱轴”造成。

2.电气系统检查步骤:

(L)电气件是否完整

(2)连接方法是否与电路图相符

(3)是否有短路与断路现象

(4)绝缘状况如何

(5)检查压缩机、启动器、过载保护器、温控器、化霜装置等电气元件是否完好

(6)启动性能检查——测量冰箱的电流值;

A.启动电流:冰箱启动电流一般为额定电流的5—8倍左右,大于或等于8倍时为启动电流过高。其主要原因是电机启动绕组短路。若启动绕组匝间短路严重,冰箱将不能投入正常运行。一般情况接通电源,在0.2~0.5秒内一瞬间完成冰箱从启动到正常运行.进入额定电流值。

若冰箱启动电流值滞后一段时间,再下降至额定电流值,说明制冷管道内局部堵塞。

B.运行电流。运行电流过高或过低;当冰箱运行电流大于或小于额定电流时,为运行电流过高或过低。运行电流过低故障原因为:制冷管道发生堵塞,制冷剂缺少等。运行电流过高的故障原因为:充入制冷剂过多,系统内有空气等。检查手段:电流表。

六、冰箱系统的维修

1.制冷系统检修步骤

(1)修理泄漏点

(2)排除堵塞

(3)更换脏堵和受潮的干燥过滤器

(4)充氮气0.8~1.2兆帕,保压24小时检漏

(5)抽真空:制冷系统内真空压力不大于6帕

(6)按铭牌指示的充注量充制冷剂。

(7)封口。

(8)焊点检漏,补发泡。

2.电气系统检修步骤

(1)按电路图接线

(2)接线端子松脱、接触不良的接牢固

(3)电气元件缺少的重新配齐

(4)损坏的电气元件修理或更换

3.常见电气故障类型

A.冰箱不通电,冰箱内灯也不亮

(1)是否停电,判断方法:利用万用表测试或询问邻居;解决方法:等待电源恢复

(2)保险丝是否正常,判断方法:检查一下家里的保险丝是否正常;解决方法:如保险丝熔断,换上正常容量的保险丝。

(3)冰箱电源插头是否脱落,判断方法:检查一下电源插头是否由插口向外脱出;解决方法:插紧。

(4)灯泡是否烧坏,门灯开关是否接通;判断方法:视检或用万用表检查。解决方法:如损坏,更换

B.通电但压缩机不转

(1)电压是否正常,判断方法:用万用表测量;解决方法:用稳压器或停止使用冰箱。

(2)温控器是否正常,判断方法:用万用表检查温控器;解决方法:如温控器损坏,更换温控器。

(3)启动继电器(PTC)是否正常,判断方法:用万用表测量,常温下电阻为15~25Ω;解决方法:如损坏更换:

(4)过载继电器是否正常,判断方法:用万用表测量;解决方法:如处于过载保护状态,则等待3~5分钟;如损坏,更换。

(5)压缩机是否正常,判断方法:用万用表测量;解决方法:如损坏,更换。

4.维修工艺

制冷剂泄漏导致冰箱不制冷的维修顺序如下:

1.将压缩机工艺管的端部起2CM处切断;

2.将连接压缩机的高低压管用气焊焊下,同时用封口套将压缩机上的高低压管及工艺管堵上;

3.将毛细管在离过滤器出口 LCM处割断并用气焊封死;

4.在高低压管上分别焊上修理阀;

5.用氮气分别向冰箱玲凝及蒸发系统充人1.2MPA和1.0MPA的氮气。保压24小时;

6.如压力下降说明系统有漏点,在找出漏点,并补漏后,再充人氮气保压14小的;

7.保压24小时不掉压后可换上新过滤器,用气焊将系统管道连接好;

8.在压缩机工艺管及过滤器工艺管上焊上修理阀,关闭过滤器工艺管上修理阀,通过压缩机工艺管上的修理阀放出氮气;

9.用真空泵,两侧抽真空,时间不少于2小时,且真空度要低于6PA;

10.向冰箱制冷系统内充注所规定量的制冷剂;

11.如冰箱内温度压力正常时可将工艺管夹死封头,头封好后,需停机检漏,如正常,可将温控旋至用户正常使用位置,运行24小时,如无异常,可交付用户使用。

5.修复冰箱的整理

(1)硝基黑漆涂覆各焊接点

(2)清洁箱体内外

(3)校正冰箱大、小门

(4)调整冰箱门封

(5)装冰箱附件

(6)售前修理的冰箱按出厂时包装原样打好包。

七.电冰箱主要技术性能及其测定

电冰箱技术性能在有关国家标准中作出了明确确定,该系列冰箱满足国家标准(GB8059.4—93、GB4706.1—1998、GB4706.13—1998的规定,对电冰箱主要技术性能归纳如下,有些性能在维修时,无法实际操作和测定,有些指标为等效测试方法,所提供的指标仅供参考。

1安全性能

(1)绝缘电阻:

用500伏兆欧表测量电源线与地线之间的绝缘电阻,应不低于2兆欧。

(2)耐压:

用容量不小于0.5千伏安高压试验台,在电源线与地线之间施加50赫兹正弦波交流电压,电压由750伏逐渐升到1500伏后,保持1分钟,不应有击穿和闪络现象。

(3)接地电阻:

电冰箱应有良好的接地装置。用接地电阻仪测量接地端与葫芦岛属外露部分之间的接地电阻,应小于0.1Ω。接地线应采用黄绿双色导线。

(4)泄漏电流:

按下图电路将电冰箱接人电路中,正常运转时,电源线的火线(L)和零线(N)与电冰箱葫芦岛属外露部分间的泄露电流应不大于1.5MA。电冰箱检修后,绝缘电阻与耐电压两个项目务必检验合格后才能交付使用。

(5)启动性能:

启动性能包括升压启动与降压启动。电冰箱在环境温度为38℃作升压或降压启动时,每通一次电,允许过载保护器跳开两次。作升压启动时,电压升到242VAC,连续启动3次,应能正常顺利启动。作降压启动时,压缩机连续运行3小时,停机3分钟,电压降到187VAC,电冰箱连续启动3次,每次运行3分钟,均能正常顺利地启动。

(6)电机绕组温度:

电冰箱压缩机运行绕组温度不得超过130℃。测定绕组温度时.电冰箱连续运行4

小时,停机后在15秒钟内用电阻法测定运行绕组的温度,其值按下式计算:

T2=(R2/R1)×(TL+234.5)-234.5

式中 T2—测定结束时,运行绕组的温度,℃;

R2——测定结束时,运行绕组的热态电阻值,欧;

R1——在T1温度时,运行绕组的冷态电阻值,欧;

T1——测定运行绕组冷态电阻时的环境温度,℃。

2制冷性能

(1)储藏温度;

电冰箱内温度有冷冻室温度与冷藏室温度之分,在18—38℃的环境温度下,要求在两个温控器上能找到一种组合使冷藏室几何中心平均温度在0一10℃之间,冷冻室的最高温度在—18℃以下,且达到规定后压缩机会自动开或停。

(2)冷却速度

在环境温度为32℃时,箱内不放物品,压缩机连续运转,使冷藏室几何中心平均温度在0一10℃之间,冷冻室的最高温度在—18℃以下,降温时间不超过3小时。

(3)负载温度回升速度:

在环境温度为25℃左右时,箱内放满负载运行到使冷藏室几何中心平均温度在0一10℃之间,冷冻室的最高温度在—18℃以下,然后切断电源使压缩机停转,箱内温度从-18℃回升到-9℃的时间不少于250分钟。

(4)制冰能力:

在环境温度为38℃时冷冻/冷藏温控器置4/4档,电冰箱运行达到稳定状态时后,将3O℃左右的水加入冰盒中,在3小时内水应结成实冰。

(5)绝热性能:

电冰箱应有良好的绝热性能,使冰箱稳定在规定值。绝热材料不应有明显的收缩、变形,不允许电冰箱外表在工作时积累过多的水汽。在正常气候下,电冰箱外表不应有凝露现象。

(6)制冷系统密封性能:

制冷系统任何部位制冷剂年泄漏量不大于0.5克。

3其它性能

1噪声:

根据国家标准规定,在消声室内,在距离电冰箱L米,与地面垂直距离1米处,用声级计“A’计权网络测量电冰箱运行时的噪声,应不高于42分贝。

2箱门开启力:

电冰箱不运行关闭L小时,然后用弹簧秤测定施加在把手上离铰链最远点且垂直于门面的开启力,不超过70N,一般为14.7—19.6N较合适。

3门封密封性:

当箱门正常关闭后,门封四周应严密。将一张厚0.08MM、宽50MM、长200MM米的纸片放在门封条上任意一点处,将箱门关闭垂直地压在纸上,纸片不应自由滑动。门封四角的缝隙宽度应不大于0.5MM,缝隙长度应不超过12MM。

4震动:

电冰箱运行时,不应产生明显的震动,其震动速度的有效值不大于0.71MM/S。

5外观要求:

电冰箱外观不应有明显的缺陷,装饰性表面应平整、光亮。涂层表面也应平整、光亮,颜色一致,色泽均匀,且牢固,没有明显的流疤、划痕、麻坑、皱纹、起泡、漏涂和集合沙粒等。

附表:

维修工具一览表

附表

HCS39A202G7型感温头电阻——温度特性表

R5=5.06KΩ±2% B5/25=3839K±2%

TX(℃) RMIN(KΩ)RNOM(KΩ)RMAX(KΩ) TX(℃) RMIN(KΩ)RNOM(KΩ)RMAX(KΩ)


4.变频电冰箱典型电路分析与故障检修

“变频电冰箱”是相对“定频电冰箱”而言的。所谓的变频电冰箱就是压缩机转速可变的电冰箱,为了实现电机转速的控制,此类电冰箱采用了变频压缩机 (FSD)。为了实现变频控制,此类电冰箱的控制系统的功能更加强大、更加完善,但电路也更加复杂,所以价格较高。不过,变频电冰箱的制冷系统与普通电冰箱基本相同,不同的就是采用了膨胀阀代替毛细管为制冷剂进行节流降压。

一、变频电冰箱的基础知识

(一)变频的基本原理

通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。目前,常见的变频方式主要有交流变频和直流变频两种。

1.交流变频

交流变频器主要由AC-DC变换器(整流、滤波电路)、二相逆变器INVERTER、PWM电路构成。

首先,AC-DC变换器将220V市电电压变换为310V左右的直流电压,为二相逆变器供电,三相逆变器在PWM电路产生的PWM脉冲作用将310V直流 电压变换为交流电压。PWM电路输出的PWM脉冲的占空比大小受微处理器的控制:)这样,通过微处理器的控制,逆变器就可为压缩机提供频率可变的交流电 压,实现压缩机转速的控制。

在变频过程中,电冰箱的制冷能力与负荷相适应,安装在箱内的温度传感器产生的温度检测信号通过微处理器运算后,产生运转频率控制信号。这个信号就可改变 PWM电路输出的PWM脉冲的占空比,相继改变了三相逆变器输出电压的频率,使压缩机(三相异步电机)在箱内温度高时高速运转,快速制冷;在箱内温度较低 时低速运转,以维持箱内温度,从而实现了压缩机的变频控制。

2.直流变频

(1)电路分析

直流变频器和交流变频器的 构成基本相同。首先,220V市电电压通过整流滤波电路变换为310V左右的直流电压,为二相逆变器供电,三相逆变器在PWM电路产生的PWM脉冲作用将 310V直流电压变换为可变的直流电压。PWM电路输出的PWM脉冲的占空比大小受CPU的控制。这样,通过CPU的控制,逆变器就可为压缩机(直流无刷 电机)提供高低可变的直流电压。当电压高时电机转速快,电压低时转速慢,从而实现压缩机转速的控制。

由于无刷电机有互为120°的二个绕组U、V、W(国内习惯用A、B、C)表示,所以为了使每个绕组都能够有电流流过,功率放大器采用了二相半桥式放大 器。功率管Q1、Q3、Q5是高端放大器(也称为上桥臂),功率管Q2、Q4、Q6是低端放大器(也称为下桥臂)。功率管Q1~Q6多采用大 功率复合管IGBT 。

当Q1、Q4导通时,300V电压通过Q1、绕组U、V和Q4构成回路,导通电流从绕组U流过绕组V,流过绕组U、V的电流使它们产生磁场驭动转子旋转; 当Q1、Q6导通时,300V电压通过Q1、绕组U、W和Q6构成回路,导通电流从绕组U流过绕组W,流过绕组U、 W的电流使它们产生磁场驱动转子旋转;当Q3、Q6导通时,300V电压通过Q3、绕组V、W和Q6构成回路,导通电流从绕组V流过绕组W,流过绕组V、 W的电流使它们产生磁场驱动转子旋转;当Q3、Q2导通时,300V电压通过Q3、绕组V、U和Q2构成回路,导通电流从绕组V流过绕组U,流过绕组V、 U的电流使它们产生磁场驱动转子旋转;当Q5、Q2导通时,300V通过Q5、绕组W、U和Q2构成回路,导通电流从绕组W流过绕组U,流过绕组W、U的 电流使它们产生磁场驱动转子旋转;Q5、Q4导通时,300V电压通过Q5、绕组W、V和Q4构成回路,流过绕组W、V的电流使它们产生磁场驱动转子旋 转。

(2)电子换向(相)

直流变频压缩机的电机必须要设置转子位置检测电路,否则电机是无法运行的。目前,直流无刷电机转子中永久磁铁产生的磁通交链,在剩余的W相线圈上产生感应 信号,就可以作为直流电机转子的位置检测信号,然后配合转子磁铁位置,逐次转换为直流电机定子线圈通电相,确保它可以继续运转。

(3)无级调速

由于使用直流电源,电机的速度需要依靠调节加在电机两端的电压来调整,较简单的办法是使用PWM脉冲来调节加到电机两端的电压。PWM脉冲的占空比达到最 大时,加到电机两端电压最大,电机转速最高,而PWM脉冲占空比受微处理器CPU输出的调速信号控制。而CPU输出的调速信号又受温度调节信号和温度传感 器产生的温度检测信号的控制。

(二)变频电冰箱的优缺点

变频电冰箱的钦州:一是变频电冰箱的压缩机采用超低频启动(即软启动)技术,使启动电流比运行电流还要小,避免了启动电流对电网的污染,还降低了能量消 耗,而普通电冰箱的压缩机在启动期间,启动电流往往是正常运行电流的5~15倍,这个大冲击电流不仅对市电电网造成污染,而且容易导致用户家室内的空气开 关跳闸。二是变频电冰箱在负荷较大、温度较高时压缩机可以高速运转,实现快速降温;而在箱内温度接近设置值后,压缩机低速运转,减少电冰箱的启停次数,从 而降低了功耗,而普通电冰箱只有一种转速,不可能在满负荷时高速运转,也不能在轻负荷时低速运转。只是通过连续调节压缩机转速可使冰箱内的温度控制比较精 确和稳定。四是变频压缩机一般采用直流无刷电机,减小了常规交流异步电机造成的励磁损失。

变频电冰箱的缺点:一是由于变频压缩机采用了直流无刷电机,所以成本也要高一些;二是变频系统会带来一定的电磁兼容和电磁干扰问题扩二是变频压缩机均为往 复活塞式压缩机,这种压缩机的工作原理和结构特点决定了变频范围比较窄,导致变频电冰箱各方面的优势不像变频空调器那样明显。四是价格较高。随着技术的完善、价格的不断下降,变频电冰箱的市场占有率会越来越高的。

(三)变频电冰箱电路板与定频电冰箱电路板的异同

变频电冰箱电路板的构成和电脑控制刑定频电冰箱主要的区别:一是增加了变频板;二是主控制板需要为变频板提供驱动信号,所以 要求主控制板上CPU功能更强。图3所示的是铜川BCD-270MJV*/252MJV*/252MJG*型定频电冰箱电路,图4是铜川BCD-270- MJI*/252MJT*/252MJT*型变频电冰箱电路。两者的区别就是增加了变频板及其接口电路

二、变频电冰箱典型电路分析与检修

本节以承德248/288WBCS型三开门变频电冰箱为例介绍变频电冰箱电路分析与故障检修。该机的制冷系统采用的制冷剂是R600A(52G),它的电 气系统由按键板、操作板、电源板(电脑板、主控板)、显示板、变频板、变频压缩机、风扇电机、温度检测传感器、门灯、门开关、加热器等构成。

(一)电源电路

该机电脑板的电源电路由线路滤波器和变压器降压式线性直流稳压电源构成。

插好电冰箱的电源线后,220V市电电压经连接器CN 1输入到电源电路,先经高频滤波电容CX1滤除市电电网中的高频干扰脉冲,再通过变厌器T1降压,从它的次级绕组输出12V左右(与市电电压高低成正比) 的交流电压。其中,14V左右的交流电压通过D1~D4组成的桥式整流电路进行整流,利用滤波电容EL滤波产生12V左右的直流电压,再经只端稳压器 IC7(7805)稳压输出5V直流电压。5V电压利用E4、C4等电容滤波后,为CPU、复位电路和温度传感器电路供电。稳压管ZD1用于过压保护,其作用是防止IC7异常输出电压高,导致微处理器灯负载元件过压损坏。

(二)同步控制电路

为了防止双向晶闸管在导通瞬间过流损坏,该机设置了由N 1、R7~R9、C24、C23等构成的同步控制电路(市电过零检测电路)。

电源电路工作后,D1~D4整流输出的脉动电压经R7、R8分厌限流,再经N1倒相放大,利用R59限流,C24滤波产生同步控制信号。该信号加到微处理 器IC 1的21脚。该信号进入IC 1后,对双向晶闸管触发信号发生器进行控制,确保IC 1输出的触发信号使双向晶闸管在市电过零点处导通,避免了双向晶闸管在导通瞬间过流损坏,实现同步控制。

(三)系统控制电路

该机的系统控制电路由微处理器S3F9498-32(IC1)、晶振XT1为核心构成。

1.微处理器S3F9498-32的资料

S3F9498-32不仅具有完善的控制功能,还具有强大的存储功能,无需外置存储器。

2.基本工作条件

微处理器IC1正常工作需要只个基本条件:正常的5V供电、复位电路和时钟振荡信号。

(1)5V供电插好电冰箱的电源线,待电源电路工作后,由输出的5V电压经C5滤波后,加到微处理器IC 1的供电端32脚,为它内部的数字电路和模拟电路供电。同时,该电压还加到IC 1的⑤、⑩脚,为它内部的模拟电路提供参考电压。

(2)复位电路

该机的复位电路全部集成在微处理器IC 1内部,无任何外接元件。开机瞬间,由于5V电源在滤波电容的作用下是逐渐升高的,该电压通过IC 1的32脚输入后,IC1内部的复位电路输出复位信号使存储器、寄存器等电路清零复位。当5V电源接近5V后,IC1内部电路复位结束,开始工作。

(3)时钟振荡

微处理器IC1得到供电后,它内部的振荡器与②、③脚外接的晶振XT 1通过振荡产生4MHZ的时钟信号。该信号经分频后协调各部位的[作,并作为IC1输出各种控制信号的基准脉冲源。XT1两端并联的R1是阻尼电阻,稳定振荡器工作状态。

3.操作键控制

当按下显示板卜的人上智能键或速冻键等操作键后,产生的控制信号经连接器CN3的③脚输入到电脑板,利用R57、R4分压限流,通过N2倒 相放大,再利用R6限流,C7滤波后加到IC 1的20脚,被IC1识别,IC 1不仅控制电冰箱工作在用户设置的状态,而且输出指示灯控制信号,使显示板上的显示屏显示相应的工作状态。

4.显示屏、蜂鸣器控制

显示屏、蜂鸣器电路由微处理器IC 1、放大管N3和蜂鸣器为核心构成。每次进行操作时,IC1的⑨脚输出蜂鸣器驭动信号。该信号通过R10、R11分压限流,N3倒相放大后,通过CN3的 ④脚送到显示板,通过显示板上的电路处理后,不仅控制显示屏显示电冰箱的工作状态,而且驱动蜂鸣器鸣叫,提醒用户电冰箱已收到操作信号,并且此次控制有效。

5.冷藏室开/关控制

锁定状态下,持续按冷藏室温度调节按键3S,就可以强制关闭冷藏室的制冷功能,时显示屏上的“冷藏室”图标及冷藏室温度图标熄灭,表明冷藏室的制冷功能被关闭。关闭冷藏室后,若续按冷藏室温度调节按键3S则可以恢复冷藏室的制冷功能。

6.压缩机的变频控制

需要快速制冷时,微处理器IC 1的26脚输出的PWM脉冲的占空比减小,经R48限流使P1的B极输入的电版减小,经P1放大后使它的C极输出的电压增大。该电压通过R60限流,再通 过连接器CN4的12脚输出到变频板,经变频板上的信号处理器处理后,控制功率模块输出电压升高,使压缩机电机的转速加大,实现快速制冷。若IC1的26 脚输出的PWM脉冲占空比增大后,压缩机电机转速下降,制冷速度减慢。

7.压缩机延时启动控制

压缩机每次停机需要经12MIN延时,才能再次启动运行。

8.冷冻室超温控制

当冷冻室室内的温度达到或超过-3℃且持续1H时,IC1会控制冷冻室温度显示图标闪烁,提醒用户冷冻室超温;当冷冻室室内温度低于-5℃,冷冻室温度图标停止闪烁。

提示:该机初次通电时,只要检测到冷冻室温度达到或超过-3℃时,就会报警·但冷冻传感器故障时,报警功能失效。

(四)制冷电路

制冷电路由微处理器IC1,温度传感器(负温度系数热敏电阻)、驱动块IC2(ULN2003)、光电拙合器、双向晶闸管、继电器、电磁阀、变频板、压缩机、风扇电机等构成。

该机为了实现冷冻室、冷藏室、变温室的制冷控制,采用了两个电磁阀,如图8所示。三个室制冷优先级别为:变温室第一、冷藏室第二、冷冻室第三:冷藏室、变温室、冷冻室、电磁阀和压缩机之间的关系。下面以3个室都需要制冷为例介绍该机的制冷工作过程。

当3个室都需要制冷时,微处理器IC 1的22、24、27脚输出高电平控制信号,23脚输出低电平控制信号。22脚输出高电平电压经IC2的⑦、⑩脚内的非门倒相放大,为继电器沭阳的线圈供 电,使它的触点吸合,市电电压能够为变频板供电,利用整流滤波电路产生300V直流电压,为功率模块供电;23脚输出的低电平控制信号通过IC2的⑥、 11脚内的非门倒相放大,不能为光电藕合器IC3内的发光二极管供电,IC3内的双向晶闸管截止,不能为双向晶闸管TR1提供触发信号,使TR1截止,电 磁阀1的线圈无市电电压输入,电磁阀1内的阀芯不切换,切断冷冻室蒸发器毛细管1的管口,而接通冷藏室蒸发器毛 细管2的管口;24脚输出的高电平控制信号通过IC2的⑥、11脚内的非门倒相放大,为光电藕合器IC4内的发光二极管供电,IC3内的双向晶闸管导通, 为双向晶闸管TR2提供触发信号,TR2导通,为电磁阀2的线圈提供市电电压,电磁阀2的阀芯切换,切断与电磁阀1连接的管口,而接通接变温室蒸发器毛细管3的管口。这样,压缩机排出的高压制冷剂通过冷凝器散热,由过滤器滤除水分和杂质后,通过变温室蒸发器、冷冻室蒸发器吸 热气化为变温室和冷冻室进行降温。同时,27脚输出高电平控制信号经驱动块IC2 3、14脚内的非门倒相放大,为继电器K3的线圈供电,使K3内的触点吸合,接通风扇电机的回路,风扇电机开始带动风扇旋转,使变温室的空气快速流动,确 保变温室每个部位的温度保持均匀。随着压缩机地不断运行,变温室、冷冻室的温度开始下降。当变温室的温度达到设置温度后,变温室传感器的阻值增大,5V电 压通过R16与它分压后产生的电压增大到设置值,利用R24限流,C12滤波后加到IC1的14脚,IC 1将该电压与内部的存储器存储的电压/温度数据比较后,确认变温室的温度达到要求,于是IC 1的24、27脚输出的控制信号变为低电平,27脚输出的控制信号使风扇电机停转;24脚输出的控制信号使IC4截止,进而使TR2截止,电磁阀2的线圈 无市电输入,电磁阀2的阀芯复位,关闭接变温室毛细管3的管口,而打开接电磁阀1的管口,此时制冷剂流经冷藏室蒸发器、冷冻室蒸发器, 为冷藏室和冷冻室进行降温。随着压缩机地不断运行,冷藏室的温度开始下降。当冷藏室的温度达到设置温度后,冷藏室空问传感器的阻值增大,5V电压通过 R13与它分压后产生的电压增大,经R21限流,C9滤波后加到IC 1的17脚,IC 1将该电压与内部的存储器存储的电压/温度数据比较后,确认冷藏室的温度达到要求,IC 1的23脚输出的控制信一号变为高电平,使IC4导通,接着使TR 1导通,电磁阀1的线圈有市电输入,电磁阀1的阀芯动作,关闭接冷藏室毛细管2的管口,而打开接冷冻室毛细管1的管口,此时制冷剂仅通过冷冻室蒸发器继续对冷冻室进行降温。当冷冻室的温度达到要求后,冷冻室蒸发器的 温度传感器的阻值增大,5V电压通过R17与它分压后产生的电压增大,经R25限流,C13滤波,为IC 1的13脚输入的电压增大,被IC 1识别后,IC 1的22脚输出低电平控制,经IC 1内的非门倒相放大后,使沭阳的触点释放,不再为变频板供电,使压缩机停转,制冷结束,进入保温状态,随着保温时间的延长,各个室的温度逐渐升高,使温度 传感器的阻值逐渐减小,为IC 1提供的温度取样电压减小,IC 1将电压数据与其内部固化的不同温度的电压数据比较后,控制电冰箱进入新一轮的制冷状态。

(五)化霜电路

该机的变温室和冰温室都设置了化霜电路,都是由化霜传感器(负温度系数热敏电阻)、微处理器IC1、驱动块IC2(ULN2003)、继电器和化霜加热器等元件构成,如图7所示。下面以变温室化霜电路为例进行介绍。

微处理器IC 1检测到压缩机累计运行达到8H后,它的24、27脚输出低电平电、压,28脚输出高电平电压。如上所述,24脚输出低电平电压,电磁阀2复位,切断变温室蒸发器,使其停止制冷;27脚输出低电平电压,风扇电机停转;28脚输出高电平控制信号经IC2的②、15脚内的非门倒相放大,为继电器K4的线圈供电,K4内的触点吸合,接通化霜加热器的供电回路,它开始为变温室的蒸发器加热。随着化霜的不断进行,变温室蒸发器表面的温度逐渐升高。当该蒸发器表面的温度升高到10℃后,变温室蒸发器(变 温室化霜)传感器的阻值减小,5V电压通过R18与它分压产生的电压减小,经R26限流、C14滤波后为微处理器IC1 12脚提供的电压减小,被IC 1识别后确认变温室化霜效果达到要求,控制28脚输出低电平信号,经IC2放大后,使K4内的触点断开,切断化霜加热器的供电回路,化霜加热器停止发热, 结束化霜。化霜结束后,IC 1输出电磁阀2的切换信号,使变温室开始制冷,待1 MIN后输出控制信号使风扇电机运行。

提示:变温室化霜期间,若其他室未要求制冷,则微处理器IC 1输出压缩机停转信号,使压缩机停转。

(六)环境温度过高控制电路

当环境温度超过41℃时,环境温度传感器的阻值减小,5V电压通过R20与其他分压产生的电压减小,经R3限流、C8滤波后,为微处理器IC 1 18脚提供的电压减小,被IC 1识别后判断环境温度超过41℃,对冷藏室的温度检测方式进行变更,不再检测冷藏室空间温度检测方式,而采用冷藏室蒸发器温度检测方式,确保冷藏室在环境高温的情况下得到正常的制冷效果。

(七)冷藏室照明灯电路

冷藏室照明灯电路由微处理器IC1、放大器N3, LED型照明灯等构成。打开箱门时,门打开的信号被IC 1识别后,IC 1的19脚输出照明灯控制信号,该信号通过R46、R47分压限流,再通过N7倒相放大,经连接器CN3的⑧脚为照明灯供电,使照明灯发光,方便用户采取 食品。

(八)故障自检与故障代码

为了便于生产和维修,该系统设置了故障自我检2则功能。当温度传感器或其阻抗信号/电压信号变换电路异常时,被微处理器IC1检测后,通过显示屏显示故障代码,提醒该机进入保护状态和故障原因。

(九)温度传感器异常处理电路

该机为了保证温度传感器异常时,不影响电冰箱制冷的基本功能,设置了温度传感器异常处理电路。不过,该电路异常时还会产生制冷温度异常的故障。

1.冷藏室蒸发器传感器异常

当冷藏蒸发器传感器或其阻抗信号/电压信号变换电路异常,不能为微处理器IC 1提供正常的冷藏室蒸发器温度检测信号时,若该机处于人工智能状态,且环境温度超过40℃,则IC 1进入该传感器异常工作模式,冷藏室开关机时间由冷藏空间温度传感器检测的温度进行控制(开机:10℃,关机:8 ℃)。

2.冷藏室空间传感器异常

当冷藏空间传感器或其阻抗信号/电压信号变换电路异常,不能为微处理器IC 1提供正常的冷藏室空间温度检测信号时,该机不能进入人工智能、速冻状态。在冷冻室温度控制正常,且冷藏室不要求单独开机的情况下,IC1进入该传感器异 常工作模式,就是在冷冻室每次制冷前,先为冷藏室制冷8MIN。

3.冷冻室温度传感器异常

当冷冻室传感器或其阻抗信号/电压信号变换电路异常,不能为微处理器IC 1提供正常的冷冻室温度检测信号时,该机不能进入人工智能状态,并且不能超温报警及冷冻温度显示功能。冷藏室温度控制正常时,IC 1进入该传感器异常工作模式,在每次冷藏室制冷结束后,冷冻室继续制冷1 0MIN 。

4.变温室温度传感器异常

当变温室传感器或其阻抗信号/电压信号变换电路异常,不能为微处理器IC 1提供正常的变温室温度检测信号时,不能设置变温室温度显示,在冷藏室工作止常时,IC 1进入该传感器异常工作模式,在甸次冷藏室制冷结束后,变温室继续制冷15MIN。

5.冷藏室、冷冻室温度传感器异常

当冷藏室空间传感器和冷冻传感器都损坏时,IC 1进入这两个传感器异常的工作模式,在每次变温室制冷结束后,冷藏室和冷冻室进入开机20MIN,停机20MIN的时间控制制冷状态。其中在开机20MIN中,前8MIN同时制冷,后12MIN冷冻室单独制冷。

6.冷藏室、变温室温度传感器异常

当冷藏空间传感器、变温室传感器两个传感器都损坏时,IC 1进入这两个传感器异常的工作模式,在每次冷冻室需要制冷前,冷藏室和变温室依次制冷10MIN。

7.冷藏室、变温室、冷冻室温度传感器异常

当这三个传感器都异常时,IC 1进入这二个传感器异常的工作模式,冷藏室、变温室、冷冻室分别制冷10MIN,停机20MIN的时间控制状态。

8.化霜传感器异常

当化霜传感器或其阻抗信号/电压信号变换电路异常,不能为微处理器IC1提供正常的化霜检测信号时,在未化霜状态则不进入化霜状态;在化霜时则会立即退出化霜状态。

(十)常见故障检修

1.整机不工作

该故障的主要故障原因:一是由于供电线路异常;二是电源电路异常;三是微处理器电路异常。

首先,检查电源线和电源插座是否正常,若不正常,检修或更换;若正常,用电阻挡测量该机电源插头两端阻值,若阻值为无穷大,说明电源线异常或电源变压器 T1的初级绕组开路,拆出电路板后,测T1的初级绕组两端的阻值是否正常,若正常,说明电源线开路;若阻值仍为无穷大,说明T1的初级绕组开路。若测量电 源插头的阻值正常,说明电源电路或微处理器电路异常。此时,测E4两端有无5V电压,若有,查微处理器电路;若没有,说明电源电路异常。此时,测E1两端 电压是否正常,若正常,查稳压器IC7、C4、ZD1和负载;若不正常,查T1、D1~D4、E1、C3。确认故障发生在微处理器电路时,首先,要检查微 处理器IC1供电是否正常,若不正常,查线路;若正常,检查按键和开关晶振XT 1是否正常,如不正常,更换即可;若正常,查微处理器IC 1 。

注意:变压器T1的次级绕组无交流电压输出,多为初级绕组串联的过热保护器开路所致。因此,维修时还必须检查整流堆D1~D4或E1、 E2、 IC7、IC2等元件是否击穿,以免更换后的变压器再次损坏。

2.风扇电机转,压缩机不转

该故障的主要故障原囚:一是变频板异常;二是驱动板供电电路异常;三是压缩机异常;四是微处理器电路异常。

首先,测变频板有无220V交流电压输入,若有,说明变频板电路、压缩机或微处理器异常;若没有供电,说明供电电路异常。确认供电电路异常后,测继电器 沭阳的绕圈有无供电,若有,检查沭阳及其触点所接线路;若没有,测IC1的22脚能否输出高电平控制电压,若不能,查IC1;若为高电平,查驱动块 IC2。确认变频板有市电输入后,测变频板有无压缩机驱动电压输出,若有,检查线路和压缩机;若没有,测连接器CN4的12脚能否输出正常的转速调整电 压,若能,查变频板电路;若不能,测IC1的26脚输出的PWM电压是否正常,若不正常,查温度检测电路和IC1;若能,查放大管P1及电阻R48、 R60。

提示:若P1、 R60、R48和IC 1异常还会产生压缩机电机转速异常的故障。

方法与技巧:

变频板业余条件下的检测方法:可将两块万用表置于750V交流电压挡,将它们的一根表笔接地,另一根表笔接着变频板的U、V、W三个输出端的任意2个脚 上,为电冰箱通电,万用表会显示3次跳变电压,并且变频板上的指示灯经一段时间长亮后,开始以较大的周期闪烁3次,最后连续闪烁20次,基本说明变频板正 常,故障是压缩机异常;否则,说明变频板异常。

业余条件下,测量变频板输入的调速电压能在1.6~2.7V左右的范围变化,说明PWM电路正常,故障发生在变频板,否则说明微处理器IC1没有输出正常的PWM脉冲或PWM电路异常。

3.显示故障代码F1

该故障的主要原因:一是冷藏室蒸发器传感器异常;二是冷藏室蒸.发器传感器的阻抗信号/电压信号变换电路异常;二是微处理器IC 1异常。

首先,测微处理器IC 1的16脚能否输入正常的冷藏室蒸发器温度检测电庄,若能,说明IC 1异常;若不能,检查连接器CN4连接是否正常,若不正常,重新连接;若正常,检查冷藏室蒸发器温度传感器是否正常,若异常,用相同阻值的负温度系数热敏电阻更换即可;若正常检查CN4、R14、R22、C10。

4.显示故障代码F2

该故障的主要原因:一是环境温度传感器异常;二是环境温度传感器的阻抗信号/电压信号变换电路异常;_三是微处理器IC1异常。

首先,测微处理器IC 1的18脚输入环境温度检测电压是否正常,若正常,说明IC 1异常;若不正常,检查连接器CN3连接是否正常,若不正常,重新连接;若正常,检查环境温度传感器是否正常,若异常,用相同阻值的负温度系数热敏电阻更 换即可;若正常检查CN3、R3、R20、C8。

5.显示故障代码F3

该故障的主要原因:一是冷藏室空间温度传感器异常;二是冷藏室空间温度传感器的阻抗信号/电压信号变换电路异常;一是微处理器IC1异常。

首先,测微处理器IC1的17脚输入冷藏室空间温度检测电压是否正常,若正常,说明IC1异常;若不正常,检查连接器CN4连接是否正常,若不正常,重新 连接;若正常,检查冷藏室空间温度传感器是否正常,若异常,用相同阻值的负温度系数热敏电阻更换即可;若正常检查CN4、R21、R13、C9。

6.显示故障代码F4

该故障的主要原因:一是冷冻室温度传感器异常;二是冷冻室温度传感器的阻抗信号/电压信号变换电路异常;三是微处理器IC1异常。

首先,测微处理器IC 1的⑩脚输入冷冻室温度检测电帐是否正常,若正常,说明IC 1异常;若不正常,检查连接器CN4连接是否正常,若不正常,重新连接;若正常,检查冷冻室温度传感器是否正常,若不正常,用相同阻值的负温度系数热敏电 阻更换即可;若正常检查CN4、R25、R17、C13。

7.显示故障代码F5

该故障的主要原因:一是变温室空间温度传感器异常;二是变温室空间温度传感器的阻抗信号/电压信号变换电路异常;_三是微处理器IC 1异常。

首先,测微处理器IC 1的14脚输入变温室空间温度检测电压是否正常,若正常,说明IC 1异常;若不正常,检查连接器CN4是否正常,若不正常,重新连接;若正常,检查变温室空间温度传感器是否正常,若异常,用相同阻值的负温度系数热敏电阻 更换即可;若正常检查CN4、R24、R16、C12。

8.显示故障代码F6

该故障的主要原因:一是变温室蒸发器(变温室化霜)温度传感器异常;二是变温室蒸发器温度传感器的阻抗信号/电压信号变换电路异常;二是微处理器IC 1异常。

首先,测微处理器IC 1的12脚输入变温室蒸发器温度检测电压是否正常,若正常,说明IC1异常;若不正常,检查连接器CN4是否正常,若不正常,重新连接;若正常,检查变温室蒸发器温度传感器是否正常,若异常,用相同阻值的负温度系数热敏电阻更换即可;若正常检查CN4、R26、RI 8、C14。

9.变温室结霜

该故障的主要原因:一是变温室化霜加热器异常;二是化霜加热器的供电电路异常;二是温度检测电路异常;四是微处理器电路异常。

首先,测化霜加热器有无220V交流电压,若有,检查化霜加热器及线路;若没有供电,说明供电电路异常。此时,测继电器K4的线圈有无供电,若有,检查 K4及其触点所接线路;若没有,测IC1的28脚能否输出高电平控制电压,若不能,查变温室温度检测电路和IC1;若为高电平,查驱动块IC2。

注意:若化霜电路的熔断器熔断,还应检查继电器K4或驱动块IC2是否正常,以免它们异常引起加热器加热温度过高,导致更换后的熔断器再次损坏。

10.变温室风扇电机不转

该故障的主要原因:一是变温室风扇电机异常;二是室内化霜加热器的供电电路异常;三是微处理器电路异常。

首先,测变温室风扇电机有无220V交流电压,若有,检查风扇电机;若没有供电,说明供电电路异常。此时,测继电器K3的线圈有无供电,若有,检查K3及其触点所接线路;若没有,测IC1的27脚能否输出高电平控制电压,若不能,查变温室蒸发器温度检测电路和IC1;若为高电平,查驱动块IC2。

11.冷藏室照明灯不亮

该故障的主要原因:一是LED型照明灯异常;二是照明灯供电电路异常;只是门开关电路异常;四是微处理器电路异常。

首先,在开门状态下,测连接器CN3的⑦、⑧脚有无照明灯供电电压,若有,查LED照明灯与线路;若没有,查门开关;若门开关正常,测微处理器IC 1的19脚能否输出高电平控制电压,若不能,查IC 1及它与门开关间的线路;若为高电平,测放大管N7的B极有无导通电压,若有,检查N7;若没有,检查R46、N7 。

提示:若N7的CE结击穿还会产生照明灯始终亮的故障。

12.仅冷藏室不能制冷

该故障的主要故障原因:一是电磁阀1或其控制电路异常;二是电磁阀2或其控制电路异常;三是冷藏室温度检测电路异常;四是微处理器电路异常。

首先,测微处理器IC1的17脚输入的冷藏室温度检测电压是否正常,若不正常,检查冷藏室温度传感器与IC 1间电路;若正常,测电磁阀2的线圈有无供电,若有,测电磁阀1的线圈有无供电;若无,说明电磁阀内部异常。此时,将该机设置为冷冻室单独制冷状态,若冷 冻室可以单独制冷,说明电磁阀1异常;若不能,则是电磁阀2异常。电磁阀损坏后,需要更换电磁阀并抽空加注制冷剂才能排除故障。若电磁阀1的线圈有供电, 说明电磁阀1的控制电路异常,测双向晶闸管TR1的控制极有无触发信号输入,若没有,说明TR 1异常;若有,测IC 1的23脚是否输出高电平电压,若是,查IC 1;若不是,查光电藕合器IC3。若电磁阀2的线圈没有供电,说明电磁阀2的控制电路异常,测双向晶闸管TR2的控制极有无触发信号输入,若有,说明 TR2异常;若没有,测IC 1的匆脚能否输出高电平电压,若不能,查IC 1;若能,查光电藕合器IC4。

13.仅变温室不能制冷

该故障的主要原因:一是电磁阀2或其控制电路异常;二是变温室温度检测电路异常;三是微处理器电路异常。

首先,测微处理器IC 1的14脚输入的变温室温度检测电压是否正常,若不正常,检查变温室温度传感器与IC 1间电路;若正常,测电磁阀2的线圈有无供电,若有,说明电磁阀2异常;若无供电,则按仅冷藏室不制冷故障的方法检修电磁阀2的控制电路。

更多家电维修干货,请前往应用市场下载”扳手”APP,百万维修师傅的互联网聚集地。

可在线接单、每周2本家电维修书籍免费赠送(电子版),免费观看《在线维修视频实操演讲》—每日更新!所有家维人的学习、交流之地!

本文来自网络,不代表品牌家电维修网立场,转载请注明出处:https://www.33x1.com/zhishi/dianshizhishi/560272.html

作者: baixiuhui1

为您推荐

联系我们

联系我们

18079759494

在线咨询: QQ交谈

邮箱: 964571095@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

返回顶部